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Genetic variation describes the differences between individual genomes and next generation sequencing (NGS) is becoming
more and more important for studying the association between the genetic variations and disease-related phenotypes. In this
review, we discussed the general pipeline for detecting genetic variation from high-throughput NGS reads. For each
component of the pipeline, we compared several widely used tools, which could be very helpful for users to choose
appropriate tools and parameters to call and analyze the genetic variants under their specific circumstances.
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Introduction

With the advancement of high-throughput sequencing
technique, the cost of genome sequencing is decreasing
rapidly in the past decade, leading to the great
achievements in personal genome sequencing projects such
as 1000 genome project [1] and the personal genome
project [2]. The increasing availability of the genome
sequences provides a great opportunity to study the genetic
variations between different entities.
Genetic variation describes the differences between our

genomes. There are two important types of genetic
variations: ‘Single nucleotide polymorphism’ (SNP) and
‘Structure variation’. SNP is the difference in a single
nucleotide between members of one species, which is the
most common type of the genetic variation, estimated to
account for 90% of all variants [3]. Structural variation is
the variation in the structure of the genome, such as
copy-number variation, deletions, inversions, insertions
and duplications. While some genetic variation is harmless,
many of the genetic variations are playing important roles
in diverse types of diseases such as Crohn’s disease [4].
Therefore, detecting and studying those genetic variations
is of vital importance to understand the underlying
mechanism, which can help us to diagnose or even cure the
corresponding diseases. Already many Mendelian disease
studies have employed NGS techniques to identify causal

genes based on patient-specific variants [5, 6, 7]. As
Mendelian disease related variations rarely occur among
the healthy genome, the interpretation of patient-specific
variations is relatively simple. However, this would
potential raise the false discoveries due to the errors in
sequencing and false variation detection methods.
Therefore, the accurate variation detection method is very
critical for the success of the clinical genomic based on
NGS techniques.
There are lots of existing pipelines to identify genetic

variants. Typically, those pipelines are composed of two
major components: Read aligner and Variant caller. The
names are quite self-explanatory. Read aligner is used to
align reads to the reference genome while the variant caller
is used to call the variants based on the mapped reads. In
the remaining sections of this work, we will discuss several
widely used pipelines for detecting genetic variants and
how to study the association between the genetic variants
and the phenotype of interest such as certain disease.

Genetic variants detecting pipeline

NGS read aligners
As described in Figure 1, we need first to map the raw

NGS reads to the reference genome before calling any
potential genetic variants. The mapping accuracy is very
important in variation detection. If the reads are aligned
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Figure 1: Genetic variants detecting pipeline

incorrectly, the following SNP detecting would be also
problematic. Therefore, choosing the read aligner is very
important in detecting genetic variations. Among the many
read aligners, Bowtie2 [8], BWA [9] and Novoalign (
novocraft.com) are the most popular ones. We will discuss
the characteristics of those read aligners so that users may
have an idea of how to choose an appropriate read aligner
under different scenarios. These popular read aligners
typically fall into categories: hash-table indexed or
FM-indexed. The idea of hash table indexing can be traced
back to BLAST [10]. This hash table based indexing
essentially follow the same seed-and-extend procedure as
BLAST. First, keeps the positions of k-mer query
subsequence as keys. Second, searches for the exact match
of the keys, named as seeds, in reference sequences. Third,
extends and joins the seeds without gaps and then refines
them by a Smith-Waterman alignment [11]. The basic
BLAST algorithm has been improved for the alignment of
different types. This type of methods typically consumes
less space as it builds the index based on the position of
sequences instead of the sequences themselves. The
FM-indexing is basically based on Burrows-Wheeler
transform(BWT) [9]. When a string is transformed by
BWT, the order of the characters is permuted. If there are
several sub-strings that occurred often in the original string,
the transformed string will have several places where a
single character is repeated multiple times in a row. BWT
transforms the original string into a more compressed
format where the same characters are placed side by side as

a group rather than in a scattered way and such
transformation is reversible. For the 3 aligners we
discussed, BWA and Bowtie2 are based on FM-index while
Novoalign adopts the hash table indexing as described in
Table 1.
Another difference between those aligners is the way to

find the inexact matches. As most aligners allow a certain
number of mismatches, finding inexact matches efficiently
is very important for read aligners. Bowtie utilizes a
backtracking strategy to perform a depth-first search
through the entire space, which stops until the first
alignment that satisfies specific criterion is found. BWA is
using a similar backtracking strategy as Bowtie. However,
the search in BWA is bounded by the lower limit of number
of mismatches in the reads. With a better estimation of the
limit, BMA can search in a much smaller space and thus
can be much more efficient. Novoalign first finds candidate
alignment positions from the reference genome for each
read and calculates the alignment score, based on base
qualities, the existence of gap and ambiguous codes(Ns).
Because of this alignment score based strategy, users are
unable to set up allowed mismatches for Novoalign, but
they can specify an alignment score instead. Table 1
presents a comparison between different read aligners as
presented in [12]. BWT-based aligners (e.g. Bowtie, BWA)
are fast, memory-efficient and particularly useful for
aligning repetitive reads, however, they tend to be less
sensitive than the state-of-art hash-based algorithms (e.g.
Novoalign).
The reads mapping is a tradeoff between accuracy and

read depth. Using a stringent alignment cutoff (e.g. smaller
mismatches or larger alignment score) always lead to fewer
mapped reads while using loose cutoff leads to worse
alignment accuracy. The optimal choices of alignment
cutoffs might differ in different organisms. For example,
the populations of fruit-fly are generally more variable than
human populations, using alignment cutoff optimized for
human sequence analysis might lead to severe loss of
mapped reads in fruit-fly. This, in turn, might lead to
potential biases for all downstream analysis. On the other
hand, using alignment cutoff good for fruit-fly might be
leading to a huge amount of incorrectly mapped reads in
human. Therefore, it’s very important to choose the right
alignment parameters for the mapped reads. Users might
need empirical experiences from previous studies to choose
‘proper’parameters for each of those aligners in different species.

http://novocraft.com
http://novocraft.com
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Genetic variants caller

After we got the mapped reads using the read aligners
(normally in SAM format or BAM format), we will need to
call genetic variants afterwards. Variants calling typically is
composed of two components: genotype assignment and
variant identification. Early probabilistic methods such as
Mapping and Assembly with Quality (MAQ) [13] and
SOAPsnp [14],used fixed prior values for heterozygote
probabilities and nucleotide-read error probabilities.
Multiple sample genotype calling, using EM algorithm to
estimate the model parameters, was used by seqEM [15].
The most widely used variant callers include SAMtools

[16], GATK [17], Atlas [18]. Although SAMtools and
GTAK are both using a Bayesian approach to call the
variants, they produce slightly different variants. There are
some major differences between GATK and SAMtools,
two of the most widely used variant callers. First, GATK
drops reads with low mapping quality, but SAMtools uses
all reads by default. Second, the model behind SAMtools
and GATK is very similar. GATK later augmented the
model to work with multi-allelic cases while SAMtools did
not. Third, Samtools utilized hand-tune filters while GATK
learns filters from data. GATK’s approach is more

convenient and powerful especially when we have enough
data to train the model. GATK is clearly more complicated
and tends to have better variant calling results. As
described in [19], the detected variants from GATK were
compared with those from SAMtools from the same 30
subjects. For these comparisons, they used the
UnifiedGenotyper algorithm in GATK and mpileup in
SAMtools. They observed a true-positive rate of 95% for
GATK and 70% for SAMtools. Although having relatively
worse performance than GATK, SAMTools remains a
useful tool for many tasks. As it limits the total read depth
to 8000, it is more suitable to evaluate whole genome
sequencing data at moderate coverage rather than target
candidate gene sequencing, which generally contain a large
portion of sites with higher coverage. Besides, the
single-sampleSNP detection accuracy is similar to GATK.
Compared with SAMtools and GATK, Atlas is based on
total different model (logistic regression), which does not
utilize the traditional probabilistic model to calculate
likelihood. Besides, it calls SNPs and indels using separate
programs. As discussed in [20], Atlas did not show
consistent advantages over the other methods especially
GATK.

Table 1: read aligners comparison

Bowtie2 BWA Novoalign

Availability http://bowtie-bio.sourceforge.net/bowtie2/index.shtml http://bio-bwa.sourceforge.net/ http://www.novocraft.com/

Indexing FM-index FM-index Hash table

Inexact match Back-tracking Back-tracking Alignment score

mismatch allowed 0-3 max in read up to 6 up to 8

Alignments reported per
read up to any up to any random/all/none

Gap alignment unavailable available available

Best alignment minimal number of mismatch minimal number of mismatch highest alignment score

Table 2: variant callers comparison

Caller

Availability
SAMTool

s
http://samtools.sourceforge.net/

GATK
https://software.broadinstitute.org/gatk/

Atlas
https://sourceforge.net/p/atlas2/wiki/Atlas2%20Suite/

Code C Java Ruby

Model HMM,MA
Q Bayesian Logistic regression

Algorithm EM MapReduce -

Variants SNPs and indels SNPS and indels SNPs and indels

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/
http://www.novocraft.com/
http://samtools.sourceforge.net/
https://software.broadinstitute.org/gatk/
https://sourceforge.net/p/atlas2/wiki/Atlas2%20Suite/
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Genome-wide association study (GWAS)

Genetic variants themselves do not tell any information
about the potential association with individual phenotypes,
which could be potentially associated with cancer risks
[21]. Using the aforementioned pipeline, we can detect
various genetic variants from NGS reads. The GWAS study
asks if whether there are specific genetic variants found
more often than expected in individuals with the phenotype
of interest such as disease. The most common approach of
GWAS studies is the case-control scenario, which
compares two groups of individuals, for instance a normal
group and a cancer group, to see whether the group is
enriched with certain genetic variants.
There are two primary classes of phenotypes: categories

(typically binary) or quantitative. From the statistical point
of view, quantitative traits tend to be better as they improve
the power to detect a genetic effect, and have a more
explainable analysis results. For some diseases, the disease
risk has been quantified. For example, High-density
lipoprotein(HDL) and low-density lipoprotein(LDL)
cholesterol levels are strong predictors of heart disease.
Therefore, the genetic variant association studies can be

conducted by examining the relationship between genetic
variations and these quantitative levels. Genetic variants
that influence these levels are also easy to explain- for
example, a unit change in LDL level per allele. Many other
disease traits can’t be clearly quantified. In such
circumstances, category labels are usually to represent
‘affected’ or ‘unaffected’. This makes the association
studies much more difficult considering the enormous
difference in measurement error associated with classifying
individuals as either ‘case’ or ‘control’ versus precisely

measuring a quantitative trait.
When a well-defined phenotype is chosen for a study

population, the statistical analysis for the association
between genetic variants and genotypes can begin.
Quantitative traits are normally analyzed using generalized
linear model methods such as the most widely used
ANOVA. The null hypothesis of an ANOVA using a single
SNP is that there is no difference between the trait mean of
any genotype group. The p-value can be calculated based
on such null hypothesis. The binary trait is generally
analyzed using either contingency table. Contingency table
tests examine and measure the deviation from
independence that is expected under the null hypothesis
that there is no association between the phenotype and
genetic variants. The chi-square test and Fisher’s exact test
are most widely used tests in this category. In addition to
single-locus analyses, genome-wide association studies
provide a great opportunity to examine interactions
between genetic variants across the genome (Multi-locus
analysis). Unlike the single-locus test, the multi-locus tests
are much more complicated. A common strategy is to
restrict investigation of SNP combinations to those fall
with an established biological context such as pathway or
protein family. Generally, a statistical method will be used
to examine the significance of all potential SNP-SNP
combinations in the GWAS dataset. A widely used
multi-locus analysis tool in this type is INTERSNP [22].
There are also some widely used GWAS analysis toolkit
such as plink [23], which integrated both single-Locus and
multi-Locus analysis. Plink also integrated multi-correction
and Stratified analysis, which makes it very comprehensive
and powerful. The comparison between different GWAS
analysis methods can be found in table.

Table 3: Genetic variant association tests/Tools

Test/Tool ANOVA Chi-Square Fisher’s exact test INTERSNP plink

Availability - - - http://intersnp.meb.uni-bonn.de/ http://zzz.bwh.harvard.edu/plink/

Analysis Type Single-Locus Single-Locus Single-Locus Multi-Locus Single-Locus and Mult-Locus

Trait Quantitative Binary Binary Binary and Quantitative Binary and Quantitative

Conclusion

Next-generation sequencing is very powerful for
identifying rare and de novo variants. The NGS reads

mapping is crucial for variant calling followed. Therefore,
choosing the appropriate read aligner and parameter is
non-trivial for the genetic variation analysis. In this review,
we compared a batch of commonly used read aligner to

http://intersnp.meb.uni-bonn.de/
http://zzz.bwh.harvard.edu/plink/
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provide the readers some ideas of choosing read aligners
and setting parameters. In this study, we have also
compared a few widely used variant callers and GWAS
study methods. With those discussions, readers can have an
idea of the major components of the general pipeline of
genetic variation studies: reads mapping, variant calling
and genotype association. Besides, readers are also able to
know the characteristics of different methods for each
component and choose the appropriate methods and
parameters based on their own specific application
scenarios.
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