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For most licensed vaccines, protection efficacy is mainly conferred via the induction of neutralizing antibodies. Recently,
potent and broadly neutralizing antibodies (bNAbs) have been isolated from certain HIV-1 elite controllers. The therapeutic
and prophylactic efficacy of these bNAbs has been evaluated in animal models. The results were promising as bNAbs
concentrations that could confer total protection were achievable by vaccination. Extensive efforts have been made to
induce such bNAbs against HIV-1 infection, but none has succeeded yet. With a better understanding of the structure of
bNAbs by X-ray diffraction and independent longitudinal observation of bNAbs in HIV-1 infected individuals, new ideas to
guide the design of HIV-1 vaccines are expected to be proposed. Here, we reviewed strategies of viral escaping, characters
and targets of HIV-1 bNAbs, and strategies of current vaccine design. Our review provides indication of potent bNAbs in
role of vaccine design.
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HIV-1 envelope and viral escape

HIV-1 envelope glycoprotein is not only responsible for
viral binding with the facilitation of receptors and
co-receptors, but also serves as the main target for HIV-1
specific antibody neutralization in controlling HIV-1
viremia and disease progress via antibody’s function in
either impeding viral binding or blocking membrane fusion
[1-9]. HIV-1 envelope is a transmembrane protein. The env
gene of HIV-1 codes for the gp160 protein which forms a
homotrimer. The gp160 precursor will be cleaved into
gp120 and gp41 by the protease in the host cell. Thus the
envelope protein is a trimer that is composed of three
copies of heterodimers of gp41 and gp120. gp120 mediates

viral binding with viral receptor CD4 and co-receptors
CCR5/CXCR4, whereas gp41is responsible for membrane
fusion [10]. HIV-1 specific antibodies induced in early
stage of infection, which cannot control viral replication,
are against gp41 [11,12]. After another 4 to 14 weeks,
gp120-specific antibodies are induced, showing limited
neutralizing ability against autologous viruses [13,14].
Meanwhile, through rapid viral replication and high
error-prone reverse transcription, certain viral mutants
resistant to autologous neutralizing antibodies quickly
emerge and soon dominate the viral swarm [13,15]. The
constant battle between neutralizing antibodies and escaped
HIV-1 mutants finally leads to the appearance of bNAbs in
certain long term non-progressors (LTNPs) at the cost of
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producing highly mutated HIV-1 viruses resistant to
autologous bNAbs [14,16-20]. Recent progress in
molecular structure has contributed greatly to the
understanding of HIV-1 immune evasion which suggested
an explanation that why HIV-1 envelope proteins fail to
elicit effective neutralizing antibodies as other viral
vaccines did [21,22]. The most common strategies
recruited by HIV-1 in impeding bNAbs generation are
concluded as follows:

Extensive glycosylation
Extensive glycosylation are commonly observed on

envelopes of escaped viruses, which is speculated to be one
of the main reasons for viral escape [13,23-29]. This
“glycan shield” makes the epitopes on the envelope more
inaccessible to antibodies. In addition, the glycan shield
displayed on the envelope shares similarity to human
glycoproteins, which has high risk to be not recognized by
human B cells due to the immune tolerance to autologous
antigens generated along with B cell development and
maturation [30,31].

Conformational masking
Conformational masking is responsible for HIV-1

immune evasion [32]. Two functional sites on the envelope
are the main beneficiaries to this strategy. One is
CD4-induced binding site (CD4is), which appears on the
envelope only after viral binding to CD4 receptor. The
other is the membrane-proximal external region (MPER)
region which is normally sealed off except when
membrane fusion occurs [33]. The importance of
conformational masking and heavy glycosylation in
immune evasion has been well illustrated by the difference
study in antibody immune responses during infection of
HIV-1 and HIV-2. HIV-2 envelops are normally less
conformational masked or glycosylated. Accordingly,
bNAbs are commonly observed existing in HIV-2 infected
individuals rather than HIV-1 infected individuals [34-38].

Paucity of HIV-1 spikes
The paucity of envelope molecules on the viral surface is

another reason for envelope-induced immune evasion
[39,40]. About 14 envelope spikes in average are expressed
on each HIV-1viral particle, whereas the envelope spikes
on other viruses are much higher [41]. Given that so few
envelop spikes are displayed on the envelope protein,

antibodies have difficulty in bivalent binding to two
different spikes on the same viral particle. Thus, bivalent
binding can hardly be achieved in HIV-1 which results the
loss of efficacy.

HIV-1 epitopes targeted by bNAbs

Recently, an increasing number of bNAbs with
improving breadth and potency have been identified from
certain LTNPs [8,42]. In some cases, a single bNAb can
recapitulate the neutralizing ability of serum [8,9,43-47].
But more often it resulted from the combined effects of
multiple antibodies targeting different functional epitopes
of HIV-1 envelopes [16,42,48-50]. Based on the antibody
targeting activities, these functional epitopes can be
classified: CD4 binding site, N-linked glycan-containing
epitopes, and MPER.
CD4 binding site (CD4bs)
CD4bs, a recessed pocket in HIV-1 envelope, is highly

conserved which serves as a vulnerable site for interception
by antibodies [51-54]. CD4bs antibodies can bind HIV-1
envelopes by mimicking CD4 via
Complementarity-determining regions (CDR) H2 and
adjacent residues [55-57]. Considering the special
requirement for CDR H2, the variable regions of heavy
chain (VH) of these CD4-mimic antibodies identified are
invariably derived from either VH1-2 [44 ]or VH1-46
subfamily [49]. Most CD4-mimic antibodies identified
from different LTNPs are from VH1-2 [44,48,49,55,58].
Recent studies showed that only VH1-2 germline encodes
Trp50, Asn58, and Arg71, which are commonly existed in
CD4-mimic antibodies, suggesting their critical role in
antibody structure for envelope recognition. By contrast,
limitations for light chains are few. Light chains with
shorter CDR L1[56,58] or CDR L3 [59] are preferred.
Compared with VH1-2 derived antibodies, VH1-46
antibodies, represented by NIH45-46, are less common.
Besides, special requirements for CDR L3 and residues
signature are unnecessary for VH1-46 antibodies [49,60].
In some cases, antibodies recognize CD4bs by using the
long CDR H3 [61]. These antibodies exhibit less breadth
and potency compared with CD4-mimic antibodies, which
have been isolated from different LTNPs, including b12
[62] and CH103 [61].

N-linked glycan-containing epitopes
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Although HIV-1 envelopes are generally covered with
heavy glycans, certain bNAbs acquired the ability to
recognize these potential N-glycosylation (PNG) sites after
long-term evolution [43,63-66]. Given the high
homogeneity of N-linked glycans on HIV-1 envelopes with
host cellular proteins, development of glycan-specific
antibodies should be especially difficult as the deletion of
autoreactive B cells occurs early in vivo [67]. However
certain bNAbs overcome this limitation by recognizing
unique structures formed by multiple glycans or by both
glycans and adjacent peptides that do not exist in cellular
proteins. Asn332 glycan in V3 loop, along with
conformational adjacent V3 domain, is the dominate
epitope among all potential N-glycosylation (PNG) sites.
Large numbers of HIV-1 glycan-specific antibodies are
identified, such as PGT128 [43,68], PGT135 [43] and
2G12 [69]. Notably, the targeting epitope for PGT128
contains glycans at Asn301 and partial V3 loop beside
Asn332 [68]. PGT128 can recognize and penetrate the
glycan shield via its long CDR H2 and H3. The target
epitope of 2G12 includes N-glycans at Asn295 and Asn339
in addition to Asn332. 2G12 can recognize the epitope via
combining two antigen binding fragment (Fab) to a closely
dimer [70]. Generally, Asn332-V3 antibodies are equally
potent as CD4bs antibodies but with a narrower breadth
[43,71]. The mechanism underlying its neutralizing activity
remains unclear, but interference of CD4 binding may be
involved [72].
As the first bNAb isolated by single B cell cloning in

2009, PG16 can recognize conformational epitopes which
included glycans at Asn160 and adjacent residues [63,73].
More antibodies targeting similar epitope were
subsequently isolated, such as PGT141-PGT145 [43] and
CH01-CH04 [74]. The most remarkable character for these
antibodies is the extremely long CDR H3. For example,
CDR H3 of PG16 consists of 28 residues which can bind
glycans with Asn156, Asn160, and part of the V2 loop [64].
Another study showed that the binding site of PG16 covers
two gp120 on top of the envelope trimer [75], which
explains why HIV-1 envelopes are not recognized by CD4
after PG16 binding [76]. However, the breadth of PG16 is
not high and fails to neutralize some sensitive HIV-1
strains, possibly caused by the loss of L-linked glycans in
the V3 loop [63]. Another HIV-1 glycan-specific antibody,
8ANC195 can recognize the N-linked glycans at Asn234
and Asn276, which is very close to CD4bs in terms of

conformational structure [49].

MPER
Although gp41-specific antibodies dominate the early

humoral immune response, bNAbs targeting MPER are
few [77-81]. As an indispensable part of membrane fusion,
MPER is relatively conserved. Many factors might
contribute to the low frequency of MPER-specific
antibodies isolated in vivo, such as, host mimicry [82-84],
steric factor [85], and hydrophobicity [82]. In addition,
MPER is partially buried and only transiently exposed
[33,86]. MPER-specific antibodies are usually
poly-reactive. MPER-specific B cells may be selectively
deleted during B cell development and maturation process
[65,67,87,88]. This concept was confirmed with the
identification of human proteins that can cross-react with
MPER-specific antibodies [84,89]. The deletion of
MPER-specific B cells has also been observed during B
cell development in 2F5 knock-in mice [90].

Characters of bNAbs against HIV-1

Extensive mutations
Nearly all bNAbs identified so far are characterized with

extensive somatic mutations on both VH and VL fragments
[8,91-96]. The average number of mutation nucleotides for
mature human antibodies are between 15 and 20 [97],
whereas HIV-1-specific bNAbs carry more mutations [42].
Notably, about 40-100 mutations are observed on VH for
most bNAbs [43,44,49,55,63,71,98,99]. Later studies
confirmed that these mutations are indispensable to the
broad and potent neutralizing activity of bNAbs, because
both binding and neutralization abilities of their
corresponding germline antibodies are much weakened or
even abolished [49,57,61,98,100]. Somatic mutations in
vivo are induced by activation-induced cytidine deaminase
(AID) in germinal center B cells [101]. Hot spot
sequences are mainly located within CDR fragments that
explained why more mutations are scattered in CDR
regions than those in framework regions (FWR). Besides,
single point mutations are more often observed, whereas
insertion and deletion occurred less frequently [98,101].
Generally, FWRs have a certain degree of tolerance for
mutations in DNA level and replacement of mutated FWR
fragments with germline counterparts does not affect
binding affinity [98]. Intriguingly, when the same
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replacement is examined in bNAbs, a significant reduction
in neutralizing activity is observed, suggesting that the
mutations in FWR fragments are critically important for
neutralization [98].
Long CDR H3
CDR H3 is the most diverse sequence that is formed via

VDJ recombination during the maturation of B cells
[102-106] with an average length of 16 amino acids [97].
However, extremely short or long CDRs have been
observed in a number of bNAbs [107]. For example, the
length of CDR H3 is 30aa in PG9/PG16 [63,108-115] and
33aa in PGT145 [43]. Other bNAbs with extremely long
CDR H3 include PGT121, PGT 135, 10E8, and CHO01-04
[107]. Notably, extremely long CDR H3 is not a
prerequisite for all bNAbs, as its length in CD4-mimic
antibodies is usually very short at around 5aa, which still
shows broad and potent neutralizing activity [59].

Poly-reactivity
Poly-reactivity has been frequently observed in many

bNAbs suggesting that these antibodies can recognize
non-HIV-1 antigens. Given that most poly-reactive bearing
B cells have been selectively deleted because of central and
peripheral tolerance [67], it is interesting to explore why
some HIV-1-specific antibodies can be rescued [65,82].
Some speculated that this phenomenon may be due to the
paucity of envelops on HIV-1 particles which force bNAbs
to seek another epitope for bivalent binding [40]. However,
current evidence shows that poly-reactivity may be formed
during the extremely long process of antibody maturation.
Considering that most germline antibodies of bNAbs fail to
bind with HIV-1 envelopes, B cells bearing these germline
antibodies are possibly first activated by non-HIV-1
antigens [116,117].

Figure 1 Notable characteristic of representative HIV-1 bNAbs.

Rational design of vaccines to elicit bNAbs

The importance of passive treatment with antibodies has
been widely recognized. Compared with antiretroviral
drugs, antibody therapy has extraordinary advantages
[118-133]. First, antibody therapy provides long-term
protection (two to four months) as the half-life of
antibodies usually ranges from two to three weeks. Second,
bNAbs with great breadth and potency are available, which
can neutralize nearly 100% HIV-1strains in low

concentration (0.05µg/ml). Third, given that HAART has
failed to eliminate HIV-1 latency [134], the clearance of
viral latent reservoirs by Fc fragment-induced immune
response has been increasingly appreciated [135,136].
Antibody dependent cell mediate cytotoxicity (ADCC)
helps eliminate intracellular HIV-1 virions by killing HIV-1
infected cells [137]. Fourth, certain bNAbs can inhibit
cell-to-cell transmission of viral particles [138]. Finally,
more effective viral control has been documented with the
combined use of bNAbs and HAART according to the
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stages of viral replication cycle [139-142]. HIV-1 antibody
therapies have been evaluated in animal models over a
decade ago with the first generation HIV-1 neutralizing
antibodies, b12, 2F5, and 2G12. The results were quite
discouraging as protection was not observed [143].
Moreover, antibody-resistant HIV-1 mutants emerged
quickly after treatment [143-145]. With the isolation of the
secondary generation of bNAbs with extreme high
neutralizing breadth and potency, the therapeutic efficacy
of these bNAbs were evaluated in humanized mice and
rhesus macaques [138,146-148]. Results showed that
treatment with single bNAb can induce a transient drop in
viral load, whereas treatment with combined antibodies
induces long-term control of viral loads to undetectable
levels [146]. Significantly, no antibody-resistant HIV-1
variants were observed during three months of treatment.
Moreover, viremia rebounds did not occur after the
withdrawal of antibodies in 10%-15% of humanized mice
[146-148]. In addition, a recent study showed that bNAbs
can effectively reduce the size of viral reservoirs in
humanized mice [148]. Moreover, bNAbs were further
examined in rhesus macaques. One shot of bNAbs
provided rapid control of viral loads for nearly two months
at about 5µg/ml [149,150]. Interestingly, studies showed
that even single bNAbs can confer long-term control of
HIV-1 load in most SIV infected rhesus macaques,
compared with only transient reduction in humanized mice
[149,150]. The reason why bNAbs provide better control in
rhesus macaques than in humanized mice remains unclear.
However, the difference in immune systems may be the
main reason [140]. Therefore, although the efficacy of
bNAbs therapy in human needs to be further verified, the
preliminary data in animal models are promising and
provide hope for fighting against HIV-1/AIDS in the
future.
Potent bNAbs show great prophylactic or therapeutic

applications in animal models [149-152]. Vaccines that can
elicit such bNAbs would be greatly valuable for the finally
eradication of HIV-1/AIDS. However, previous vaccine
trials tested to date failed to induce such bNAbs in both
animal models and humans [153]. An increasing number of
bNAbs have been identified and characterized from
HIV-1-infected individuals, so how bNAbs are naturally
generated within the patients deserve further investigation,
which may provide valuable clues for HIV-1 vaccine
design. Both host and virus factors are speculated to be

responsible for the generation of bNAbs [154]. If host
factors are the main reason, designing vaccines to induce
bNAbs in the majority of the immunized population may
be impossible. However, recent studies proved that viral
factors, especially the successive emergence of HIV-1
envelopes from escaped variants, may contribute to the
elicitation and maturation of bNAbs. Previous studies from
rhesus macaques indicated that the envelopes of founder
viruses are associated with the initiation of bNAbs because
SIVs with different envelopes show distinct abilities to
induce neutralizing antibodies. For example, antibodies are
induced in most macaques infected with AD8 but not
DH12 virus [155,156]. The importance of the initial
envelope was further approved by the natural occurrence of
bNAbs in an individual with HIV-1 superinfections [157].
The individual was infected with HIV-1 viruses of two
different lineages. However the neutralizing antibodies
were induced by the viruses in one lineage. The diversity of
a viral population may be associated with the breadth of
neutralizing antibodies [158,159]. Based on these findings,
two vaccine strategies have been proposed: 1) HIV-1
immunogen design based on the structure of bNAbs and
targeting epitopes [160,161]; 2) reproducing the natural
occurrence of bNAbs in vivo by multiple successive
immunizations with correlated immunogens
[42,50,61,162].

Design of immunogens based on neutralizing epitopes
of envelops
The HIV-1 envelope susceptible sites to bNAbs have

been studied for long. Thus, modified HIV-1 envelopes and
their structure mimicals have been designed and tested in
animal models. Unexpectedly, bNAbs failed to be induced
by this strategy [160,163]. A later study reported that the
inferred germline antibodies of most known bNAbs do not
bind envelopes at all, which explains why the previous
HIV-1 immunogens failed to induce bNAbs [49,57,98,100].
The germline precursors of 2F5 can bind envelopes, but
they cross react with autologous proteins [164]. Thus, B
cells expressing 2F5 germline antibody are most likely to
be removed in the process of B cell development
[67,82-84].

Design of immunogens based on the inferred germline
precursors of bNAbs
The recombinant envelopes and peptides that can bind
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the germline antibodies by mimicking CD4bs and V1/V2
domains, respectively, have been designed for vaccination
[165-167]. Theoretically, vaccination with these peptides
may activate the expansion of CD4bs- or V1/V2- specific
B cells. However, these trials failed because activation of B
cells was insufficient. In addition, the frequency of
mutations in variable regions of antibodies during B cells
maturation in germinal center is high, which might be
important for the neutralizing activity of bNAbs [101].

Design of immunogens based on B cell lineage
maturation pathway
When mutations in mature antibodies induced by viral or

bacterial infection reach to a certain level, they cannot be
induced by additional stimulations [97,168-170].
Intriguingly, about 40-100 mutations accumulate in bNAbs.
To explain this phenomenon, a coevolution model of
viruses and antibodies has been proposed
[42,49,50,61,171]. According to theory, early antibodies
are elicited by the founder HIV-1 strains, which usually
weakly bind envelopes of the founder viruses with low or
even no neutralizing activity. After several rounds of
antibody maturation in germinal center, these intermediate
antibodies acquire better binding and neutralizing abilities
against the early viral strains. Meanwhile, the diversity of
the HIV-1 viral pool expands quickly because of the
error-prone reverse transcriptase and relatively short life
cycle of HIV-1. HIV-1 variants resistant to
contemporaneous antibodies are selected in vivo because
slight alterations in binding epitopes on envelope might
exempt the virus to be neutralized by strain-specific
antibodies produced in the early stages. Responding to the
evolution of viruses, strain-specific antibodies also
experience further mutations during affinity maturation in
germinal center. Mutations at certain positions may help
the antibodies to acquire additional breadth, which can
neutralize both the founder and escape variants. Finally,
bNAbs might appear in some HIV-1-infected individuals
after the iterative repetitions of antibody mutations and
HIV-1 escape. The long process of coevolution explains
why bNAbs emerged after two to four years [98,171]. The
elicitation and maturation of bNAbs were observed in
certain HIV-1-infected individuals by two independent
studies. The formation of CD4bs-specific bNAbs CH103
was first reported by Liao’s group in 2013 [61], whereas a
similar antibody maturation pathway was observed in

V1/V2-specific bNAbs by Doria-Rose and colleagues one
year later [157]. As exemplified in the maturation pathway
of the CH103 family, the germline precursor of unmutated
ancestor antibodies shows no detectable binding activity
with HIV-1 envelopes. However, early intermediate
antibodies with limited mutations that can bind HIV-1
envelopes emerged about 14 weeks after infection, which
has low binding affinity at 96,500nM. Since then the
coevolution of HIV-1 envelopes and antibodies is
longitudinally observed. The maturation affinity of CH
antibodies was noted to increase from 96,500 nM for early
intermediate antibodies to 2.4 nM for mature ones.
Consistent with these observations, a new strategy was
proposed to elicit bNAbs in individuals by mimicking the
natural occurrence and maturation of human B cells,
named B cell lineage immunogen design [162]. In brief,
this strategy can be divided into three steps: 1) to isolate
bNAbs and corresponding intermediate precursors from
LTNPs. 2) to draw the phenogenic relationship of the
unmutated ancestor antibody (UA), intermediate antibodies
and mature antibodies. 3) To use these antibodies as
templates for designing immunogens with high binding
affinity. Unlike classical immunization schemes, distinct
but closely related immunogens are used for prime and
boost in B cell lineage vaccination. To induce the further
maturation of antibodies, multiple rounds of continuing
boosts are required [74,107,172-176].

Conclusion

In summary, the most encouraging progress came from
the discovery of bNAbs from HIV-1 LTNPs with single B
cell cloning technique in the past few years. These
antibodies can efficiently reduce viral loads and slow down
the disease progress as shown in humanized mice and
rhesus macaques at the concentration accessible by
vaccination, thereby providing hope for the design of
HIV-1 immunogens. Different strategies for immunogen
designs have been proposed. However HIV-1 vaccines that
can elicit such bNAbs in vivo are still presently unavailable.
Our review provides indications in potent neutralizing
antibodies development and vaccine design against HIV-1.
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