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The energy-momentum four-vector transformation of relativity theory is derived from Hamilton’s equation for the change in 

the energy of an object that is produced by an applied force. Einstein pointed out in his original work that two clocks in 

relative motion can be distinguished when one of them has been accelerated with respect to the other, and he used this as 

justification for his prediction of time dilation. An example is presented in which two airplanes are subjected to the same 

degree of acceleration so that they both attain the same speed relative to the ground while traveling in opposite directions. 

The experiment with circumnavigating airplanes carried out by Hafele and Keating shows that, for a hypothetical 

non-rotating planet, their respective onboard clocks will be running at the same rate despite the fact that they are in relative 

motion (Triplet Paradox). It is argued that this result is consistent with the fact that neither clock has been directly 

accelerated with respect to the other in this example, but rather each with respect to the surface of the non-rotating planet. It 

is concluded that the conventional energy-momentum transformation does not hold under these circumstances , and 

therefore that the corresponding invariance relation (E2 –p2c2 = E’2 – p’2c2) is by no means of general validity. The 

concept of an objective rest system (ORS) from which objects are accelerated is employed to define a rational set of units 

for energy, time and mass for different inertial systems. Accordingly, two observers must always obtain measured values for 

these properties that are in the same proportion for any object. This procedure allows for a resolution of the Triplet Paradox 

consistent with Einstein’s original conjecture, while avoiding the contradictions that arise when the above invariance 

relation for energy and momentum is assumed to be of general validity.    
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Introduction 

 

One of the fundamental aspects of the special theory of 

relativity (STR) is the existence of four-vector 

relationships. The most basic of these involves the 

space-time four-vector that is associated with the Lorentz 

transformation (LT). Einstein argued in his original work 

[1] that an invariance condition (Lorentz invarince) must 

exist between these four variables in order to satisfy his 

second postulate (LSP). The latter states that the speed of 

light has a constant value of c (2.99792458x10
8
 ms

-1
) 

which is independent of the states of motion of both the 

source and the observer. More recently, it has been shown 

[2,3] that the LT is not the only transformation that 

satisfies the LSP, however. The alternative transformation 

(GPS-LT) satisfies a different space-time invariance 

condition, however. 

In previous work [4, 5], attention has been called to an 

empirical formula referred to as the Universal Time 

Dilation Law (UTDL) that relates the rates of clocks to 

their speeds relative to a specific rest frame (objective rest 

system ORS [6]). Experiments with circumnavigating 

airplanes [7] have shown, for example, that the ORS for 

onboard atomic clocks is the set of "non-rotating polar 

axes." Correspondingly, the axis of the high-speed rotor 

employed in the transverse Doppler measurements carried 
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out by Hay et al. [8], and later by Kündig [9] and 

Champeney et al. [10], is the ORS in this case. Einstein 

anticipated such relationships [1], predicting that a clock at 

the Equator would run more slowly than its identical 

counterpart located at one of the Poles. The symmetrical 

relationship normally expected between inertial systems 

according to STR was assumed to be inoperative since a 

force has been applied to one of them.  

One of the implications of the UTDL, however, is that 

two clocks can have the same rate even though they are 

moving with respect to each other. This situation occurs 

whenever two clocks move at the same speed relative to 

their common ORS. This conclusion, which shall be 

referred to in the following as the "Triplet Paradox," 

implies that one cannot generally predict the relative rates 

of atomic clocks based merely on knowledge of their 

respective speeds relative to a given observer, contrary to 

what is expected from STR [1]. The UTDL indicates 

further that two clocks cannot each be running slower than 

the other, for example, in opposition to what is expected on 

the basis of the Lorentz invariance condition of STR [1]. In 

the discussion below, it will be shown that the existence of 

such relationships also puts energy-momentum invariance 

in a new light.  

 

Derivation of the Invariance Condition 

 

The definition of energy or work E is given in terms of 

an applied force F on an object. A key point in the classical 

theory of kinematics is that the object must move along the 

direction of the applied force in order for any work to have 

been done: 

            dE = F·dr,                        (1) 

where dr is the vector distance the object moves. The 

change in energy dE can be related to the velocity u = dr/dt 

of the object by introducing Newton’s Second Law, F = 

dp/dt. The result is Hamilton’s equation: 

            dE = dp u = udp,                   (2) 

where dp is the change in momentum caused by the force 

F in time dt. The increase in energy ΔE (kinetic energy = ½ 

mu
2
) is obtained in the classical theory by substituting dp = 

m du in this equation and integrating (m is the inertial 

mass of the object). 

The Galilean transformation (GT) expresses the 

relationship between measurements of space and time 

relative to two different origins that are moving with a 

fixed velocity relative to one another. If the direction of 

relative motion is along the x axis, then 

            dx = dx’ + u dt’.                    (3) 

The unprimed quantities refer to the measurements made 

by a “stationary” observer relative to his fixed origin, 

whereas the primed values are obtained relative to the 

“moving” origin. A similar equation holds for the 

corresponding energy and momentum measurements 

because of eq. (2): 

            dE = dE’ + u dpx’,                  (4) 

where the primed values refer to the measurements of an 

observer for whom the “moving” origin is fixed. The other 

pairs of primed and unprimed quantities are assumed to be 

equal (dt=dt’, dy = dy’, dpy = dpy’ etc.) in the GT. 

The above equations are inconsistent with Einstein’s 

second postulate regarding the constancy of the speed of 

light in free space. The LT results by demanding that dr/dt 

= dr’/dt =c independent of the relative speed u of the two 

origins. Again, an analogous set of equations can be 

derived for energy and momentum, in this case by 

demanding that dE/dp = dE’/dp’ = c when the object is a 

light pulse [γ = (1 – u
2
/c

2
)

-0.5
]: 

            dE = γ (dE’ + u dpx’)               (5a) 

            dpx = γ [dpx’ + (u/c
2
) dE’]           (5b) 

            dpy = dpy’                        (5c) 

            dpz = dpz’.                       (5d) 

In this case, the condition of invariance for the (E, p) 

four-vector is 

            dE
2
 – dp

2
c

2
 = dE’

2 
- dp’

2
c

2
,           (6) 

in close analogy to that for the space-time variables of the 

LT, 

            dr
2
 – c

2
dt

2
 = dr’

2 
- c

2
dt’

2
.             (7) 

There is an important special case for eq. (5), namely 

when the object is at rest with respect to the moving origin 

(dp’=0).  Under this condition, 

            dE = γ dE’.                        (8) 

If one interprets the differential quantities as 

infinitesimal parts of a macroscopic object and then 

integrates eq. (8), the relativistic equivalent of kinetic 

energy K is obtained, namely 

            K = E – E’ = (γ – 1) E’.              (9) 

The inverse of eq. (5b) is given below: 

            dpx ’= γ [dpx - (u/c
2
) dE]            (10) 

If the dp’=0 condition is again assumed, it is found [3] 
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after integration and defining inertial mass m as the ratio of 

momentum p to speed u that 

            m ≡ p/u = px/u = (E/c
2
) ,             (11) 

which is the famous Einstein mass-energy equivalence 

relation [1]. This result also shows that the rest energy of 

an object is generally not zero since it must be proportional 

to the rest (or proper) mass µ = m’, that is, the value 

measured in situ by any observer [3]. It also shows on the 

basis of eq. (8) that 

            m = γ m’ ≡ γ µ,                    (12) 

since the speed of light c is independent of u. Because of 

the definition of momentum p in eq. (11), it also follows 

that 

            p = γ p’.                         (13) 

Einstein obtained an analogous proportionality relation 

for elapsed times from the LT that is the basis for time 

dilation in STR [1]: 

            dt = γ dt’.                        (14) 

The LT itself implies that events may not occur 

simultaneously for two observers in relative motion, but 

that is not expected on the basis of eq. (14) since it is not 

possible for dt to be equal to zero while dt' has a non-zero 

value. This non-simultaneity prediction of STR is also 

contradicted by experience with atomic clocks employed in 

the Global Positioning System (GPS) technology, thereby 

speaking against the LT as a physically valid space-time 

transformation [2,3]. It will be shown below that similar 

objections arise for eqs. (8,12-13) for energy, inertial mass 

and momentum based on experiments with atomic clocks 

located on circumnavigating airplanes [7]. 

 

Limitations in Validity of E,p Invariance 

There has been a broad consensus that all of the 

relativistic equations discussed above enjoy universal 

validity for inertial systems. The space-time LT invariance 

condition of eq. (7) implies that the speed of light in free 

space is always equal to c (LSP), for example, consistent 

with the results of numerous empirical investigations 

dating back to the Michelson-Morley [11] and 

Kennedy-Thorndike experiments [12]. Observations of the 

transverse Doppler effect [8-10, 13-15] also support the 

LSP[1] to a satisfactory degree of approximation. Indeed, 

the results of the Fresnel light-drag experiment carried out 

in the earth 19th century already suggested that the speed 

of light should not change with the velocity of a medium 

with refractive index of unity [16].  

The above results also constitute strong evidence for 

Galileo’s relativity principle (the first postulate of STR), 

namely that the laws of physics are the same in all inertial 

systems. Einstein pointed out in his original work [1] that 

this equivalence is destroyed whenever force is applied to 

an object such as an atomic clock, however.  His 

prediction of time dilation was the subject of much debate 

because of uncertainty on this point [16, 17]. The 

experiments of Hafele and Keating [7] with 

circumnavigating airplanes provided explicit confirmation 

of Einstein’s conjecture, but they also emphasized that care 

must be taken in applying eq. (14) to compute the amount 

of the time-dilation effect. They were only able to obtain 

satisfactory agreement with observed timing results by 

employing a hypothetical reference clock located on the 

Earth’s polar axis. The speed u to be used to evaluate γ in 

eq. (14) had to be determined relative to this axis. The 

justification given for this procedure was that clocks 

located on the airplanes and on the Earth’s surface were 

subject to acceleration due to rotation about this axis, 

which view is at least consistent with Einstein’s original 

arguments [1]. 

It is not difficult to find a counter-example for this 

position, however. Consider the diagram in Fig. 1 that 

shows two airplanes (rockets) flying off in opposite 

directions. The prescriptions of relativity theory must also 

apply for the case when the airport from which the planes 

leave is not subject to any kind of acceleration. When the 

airplanes reach a constant speed, there is thus no reason 

under these circumstances to disqualify them as 

non-inertial. One is then led to a clear contradiction in 

applying eq. (14) to this situation, since it would imply that 

the clocks on each airplane must run slower than those on 

the other (Triplet Paradox). What this example 

demonstrates instead is that the key point in applying the 

time-dilation formula is to identify a reference clock at the 

position where acceleration of the object has occurred 

(objective rest system or ORS [6]). Since the clocks on the 

two airplanes in Fig. 1 have each reached the same speed 

relative to the airport, it follows from symmetry that there is 

no way to distinguish them since all directions are 

equivalent under these circumstances. Just because the 

airplanes are inertial systems does not allow the use of their 

onboard clocks as a reference in applying eq. (14). Since 
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their speed relative to the ORS in this application is the 

same, it therefore follows that their clock rates are exactly 

equal, consistent with the symmetry inherent in Fig. 1. As 

discussed elsewhere [2,3, 19, 20], this result shows that the 

Lorentz invariance condition of eq. (7) is not universally 

satisfied. Nonetheless, a different space-time 

transformation exists (the Global Positioning 

System-Lorentz transformation / GPS-LT) which is 

consistent with all experimental timing data and does not 

come into conflict with either of Einstein’s two postulates 

of STR [1]. 

The Triplet Paradox for atomic clocks mentioned above 

is also relevant for measurements of energy and mass made 

by observers on the two airplanes, however. From the 

standpoint of an observer in the ORS (airport), identical 

objects on both planes have exactly the same properties. If 

the rest energy of these objects is E’, then according to eq. 

(8) the ORS observer will measure a value that is γ (u) 

times larger for the energy E they possess on both airplanes 

when they reach the constant speed u relative to the airport. 

Again, this holds true independent of the direction traveled 

by either of the planes. Because of the relativity principle, 

the observers located on the airplanes will continue to 

measure the energy of the object co-moving with them to 

be E’, however. Since the energy of the identical objects is 

the same on both airplanes for the ORS observer, however, 

it follows that it is also the same for each of the observers 

on the airplanes. One is therefore led to the conclusion that 

each airplane observer will measure the energy of both 

objects to be E’, the one on his own airplane but also that 

on the other. 

The latter result stands in direct contradiction to the (E, 

p) four-vector invariance relation of eq. (6), however. If the 

airplanes are not moving in the same direction, then they 

clearly have a non-zero speed relative to one another, 

which therefore implies on the basis of eq. (8) that E>E’ for 

the object carried onboard the “other” airplane in each case. 

The same argument holds for the inertial masses of these 

two objects. Since the two energy values are equal for both 

observers (E=E'), however, it is clear that eq. (12) does not 

hold for the observers on the two airplanes under these 

circumstances.  

The results of the Hafele-Keating experiments [7] 

indicate instead that each of the eqs. (8, 12-14) holds for 

the special case when the object has been accelerated 

relative to an ORS. In each instance the primed quantity in 

these equations refers to the value measured by the 

observer in the ORS when the object is still at rest there (i.e. 

the proper mass, energy etc.), whereas the unprimed value 

refers to the corresponding measurement made by the ORS 

observer when the object has been accelerated to speed u 

relative to him.  

What is clearly needed then are generalizations of the 

above equations that hold for all observers. This goal is 

made easier by the fact that the same factor γ appears in 

each them for the special case when the observer is at rest 

in the ORS from which the object of the measurement has 

been accelerated. One therefore must know the relative 

rates of clocks in the two inertial systems in which the 

object and the observer are at rest. For this purpose it is 

helpful to define a standard clock rate, say on the Earth’s 

surface. If clocks in the rest system of the object run αM 

times slower than the standard clock, while those in the 

observer’s rest frame run αO times slower than the standard, 

the following relationships hold between measured and 

proper values for the above quantities: 

            E = (αM/αO) E’                    (15) 

            m = (αM/αO) µ.                    (16) 

            p = (αM/αO) p’                    (17) 

            dt = (αM/αO) dt’.                   (18) 

These equations are clearly consistent with the relativity 

principle because αM=αO for all in situ measurements, that 

is, the proper values for each of these quantities will be 

obtained in all cases when the object is not moving relative 

to the observer. When the object is accelerated relative to 

the observer’s rest frame, then it is assumed that the ratio 

αM/αO = γ, so that the above equations then revert back to 

the special cases of eqs. (8, 12-14).  

To obtain a direct comparison with the conventional 

interpretation of STR [1,21], let us assume that two objects, 

X2 and X3, each with rest energy E’, are accelerated with 

respect to observer O1 at the airport (Fig. 1). They always 

have the same speed relative to O1, but at the end of the 

acceleration period they are traveling in opposite directions 

to one another.   

Two other observers, O2 and O3, travel with the objects 

(Triplet Paradox). An identical object X1 stays behind with 

O1. Finally, at the end of the acceleration period, X2 and X3 

are each traveling with constant speed u relative to O1. 

The results obtained by the three observers for the 
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energies of these three objects are given in matrix form in 

Table 1a for the conventional interpretation of relativity 

theory.  

The matrix is symmetric because it is assumed in STR [1, 

21] that “everything is relative.” The value that O2 obtains 

for X3 is the same as O3 obtains for X2. It is determined by 

their relative speed 2u (actually the speed will be 

somewhat less than this value when it is computed 

correctly with Einstein’s velocity addition formula [1]). 

The key point is that the results in Table 1a are not 

internally consistent: O3 supposedly finds the energy of X2 

to be larger than that of X3 (γ>1 for all speeds), for 

example, whereas O2 finds the energy of X3 to be larger 

than that of X2. Moreover, O1 finds the energy of both X2 

and X3 to be equal, whereas both O2 and O3 find them to be 

different in each case. In short, there is no proportionality 

among these results. More importantly, they are 

inconsistent with the results of the Hafele-Keating 

experiment [7], which show that O2’s clock must be 

running at exactly the same rate as O3’s and therefore 

imply that their respective units of energy are also the 

same.  

 

Table.1 Predicted energy values obtained by three different observers 

Oi for identical objects Xi in the example of Fig. 1 (Triplet Paradox) 

according to: a) the conventional interpretation of STR [1] and b) the 

ORS interpretation employing a rational set of units [6]. 

 

a)            X1             X2              X3 

O1             E’             γE’             γE’ 

O2             γE’            E’              γ (2u) E’ 

O3             γE’            γ (2u) E’         E’ 

 

b)             X1             X2              X3 

O1             E’             γE’             γE’ 

O2             E’/γ            E’              E’ 

O3             E’/γ            E’              E’ 

 

On the other hand, Table 1b results if one insists upon 

employing a rational system of units to describe these 

measurements. Note that this matrix is no longer 

symmetric. This is unavoidable if the system of units is 

rational. If O1 finds that X2 has more energy than X1, the 

same must hold true for O2 and O3. The various observers 

may have a different unit of energy, just as happens when 

one works in the mks system (J) and the other in the cgs 

system (erg), but this choice cannot affect their conclusions 

regarding the ratio of energies of any two objects. In Table 

1b it is assumed that the unit of energy is γ times larger for 

both O2 and O3 than it is for O1, which is consistent with 

both STR and O1’s actual measurements. This requires, 

however, contrary to the conventional interpretation of 

STR [1, 21], that both O2 and  

O3 agree that the energies of X2 and X3 are equal to the rest 

energy E’ in each case, and also that the energy of X1 is 

less than the rest energy E’. 

 

 

Fig.1. Diagram showing two rockets leaving the same position in a 

gravity-free region of space from the surface of a hypothetical 

non-rotating planet. Their speed relative to the departure position is 

the same for both at all times, even though their respective directions 

of velocity are always different. The symmetric relationship of their 

trajectories indicates that the rates of their respective onboard clocks 

are always the same. This remains true for the termini of the 

trajectories shown, in which case the rockets are both a) inertial 

systems (each traveling at constant velocity) and b) in relative motion 

to one another at that point. 

 

One can summarize these results quite succinctly by 

stating that the standard units of time, energy and mass all 

vary in the same proportion from one inertial system to 

another. In order to compare the results of two observers 

for the same event, it is simply necessary to know the 

values of their respective clock-rate parameters αM and αO. 

If observer M measures a value of X (M) for one of these 

properties, then the corresponding value obtained by 

observer O must be 

            X (O) = (αM/αO) X (M).             (19) 

This arrangement amounts to employing a rational set of 

units, that is, the ratios of measured values for two 

observers are always in the same proportion for any given 

property. It is important to see that eqs. (15-19) do not 

depend on the choice of a standard clock. Only ratios are 

involved in these equations, so they will not be affected by 
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a change in standard. For this reason it is helpful to use a 

single proportionality factor in each of them, which has 

been defined in earlier work [19, 20] as Q≡ αM/αO. It 

appears explicitly in each of the GPS-LT equations, for 

example. One can look upon Q as a conversion factor 

between the units employed in the pertinent two rest 

frames. If the roles of the object and observer are reversed, 

the corresponding conversion factor in this direction is just 

the reciprocal (1/Q) of that in the forward direction. The 

same reciprocal relationship exists for conventional unit 

conversions, such as from m to cm in one case and cm to m 

in the other. This arrangement makes the resulting theory 

of measurement perfectly objective, as opposed to the case 

in the conventional STR interpretation. A more detailed 

discussion of this general subject may be found elsewhere 

[22, 23]. It is the antithesis of the “everything is relative” 

interpretation of STR [1, 21], which predicts that two 

observers will each think the other’s clock is running 

slower than his own. The latter position is unequivocally 

contradicted by the results of the Hafele-Keating 

experiments [7], and also those of the transverse Doppler 

studies using high-speed rotors [8-10].  

 

Conservation of Momentum and Relativistic Invariance  

  

One of the most interesting consequences of the Triplet 

Paradox is the fact that it is inconsistent with the relativistic 

invariance relation of eq. (6) for the energy-momentum 

four-vector. It demonstrates that the energy of a moving 

object cannot always be computed by knowing its rest 

energy and its speed relative to the observer. It therefore 

also shows that the transformation of eqs. (5a-d) is also 

only valid under quite specific conditions, namely when the 

object of the energy-momentum measurements has been 

accelerated due to an applied force in the observer’s rest 

frame. This point is certainly consistent with the way it has 

been derived in Sect. II. The use of Hamilton’s equation in 

both eqs. (4, 5) is predicated on the existence of an applied 

force causing the object to be accelerated to its current 

speed u relative to the observer. This condition does not 

hold for the two airplanes in Fig. 1, however. In this case 

both have been accelerated with respect to a common ORS, 

namely the airport. Their relative speed is not the result of 

one airplane being accelerated because of an applied force 

at the other’s current location.      

It is important to see that a different assumption is 

employed to obtain the LT and the alternative 

transformation (GPS-LT [2, 3, 22, 23) mentioned in the 

Introduction. In this case it is completely immaterial how 

the object has reached its current speed. The resulting 

transformation simply relates the measurements of space 

and time for this object relative to two different origins that 

are in constant relative motion to one another [3]. It can 

therefore be used by observers on either airplane in the 

example of Fig. 1 to relate their measurements of elapsed 

time and distance traveled by the object with respect to 

these two different origins. Accordingly, each observer 

must measure the speed of a given light pulse relative to 

either of these origins to have the same constant value of c.  

The results of the Triplet Paradox also require a 

reexamination of the concept of “translational energy.” The 

conventional definition of this term is the excess energy 

that an object possesses by virtue of its motion. One needs 

to qualify this definition by specifying the state of motion 

of the observer as well as the object. If the object has been 

directly accelerated relative to the observer, the amount of 

kinetic or translation energy is given directly by eq. (9); 

that is, as (γ - 1) E’, consistent with the derivation based on 

Hamilton’s equation given in Sect. II. This value reduces to 

½ mu
2
 in the non-relativistic case. For any other observer, 

however, it is necessary to know the ratio of his clock-rate 

parameter αO to that (αORS) of the inertial system in which 

the initial acceleration occurred. Using the same notation 

as above, this means that the definition of translational 

energy K becomes: 

            K= (αORS/αO) (γ– 1) E’.             (20) 

In order to obtain an experimental verification of eq. 

(20), it is necessary to study collisions of two objects from 

the vantage point of observers on the two airplanes. If both 

objects have been accelerated with respect to the same 

ORS, it is clearly possible for an observer who is at rest in 

this inertial system to employ the laws of energy and 

momentum conservation from his perspective to obtain the 

correct solution. For any other observer to obtain consistent 

results for the same collision, he must compute the 

momentum of the various colliding objects relative to the 

ORS. In addition, he has to take into account the fact that 

his units of energy and momentum are generally not the 

same as in the ORS. In effect, this means scaling each 

conservation equation by the same factor αORS/αO on both 
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sides. This procedure obviously does not destroy the 

corresponding equalities, so by employing it, each observer 

is assured that both energy and each of the momentum 

components are conserved from his vantage point, as well 

as for the ORS observer.   

In practice there can be more than one ORS involved in 

a given collision. In this case the procedure must be 

modified as follows. Each object’s momentum must be 

determined relative to its own ORS, i.e. by multiplying the 

inertial mass of the object (in the units of the ORS observer) 

with its velocity relative to the ORS. A different set of 

conversion factors is then required for each colliding object, 

that is, taking into account the values of the respective 

clock-rate parameters of each such ORS in order to obtain 

the correct conservation relations for energy and 

momentum in the observer’s system of units.  

 

Conclusion  

 

The role of acceleration is more important than is 

generally recognized in relativity theory. A number of key 

relationships that are believed to be of universal validity 

actually only hold for the special case when the object of 

the measurement has reached its current velocity as the 

result of an applied force in the observer’s rest frame. This 

fact is demonstrated by the experiments carried out with 

circumnavigating airplanes by Hafele and Keating [7]. 

They show that the standard formula for time dilation must 

be applied with respect to a reference clock located on the 

Earth’s (non-rotating) polar axis. Clocks on the airplanes 

and at the airport of departure have all undergone 

acceleration relative to this axis. As a consequence, the 

relative rates of clocks on the two airplanes cannot be 

obtained simply on the basis of their speed relative to one 

another. 

This is true even if the two airplanes are inertial systems, 

as for example would be the case when they take off from 

an airport on the surface of a non-rotating planet and each 

reach constant velocities relative to the airport. If the 

airplanes have the same relative speed to the airport but are 

travelling in opposite directions (Triplet Paradox; see Fig. 

1), their onboard clocks must be running at the same rate 

according to the Hafele-Keating analysis [7]. A similar 

conclusion holds for energy and mass, because these 

properties increase at the same rate as clocks slow down. 

An observer on one of the airplanes must measure the same 

energy E = E’ (the rest or proper energy) for an object 

carried onboard as for an identical object aboard the other 

airplane, even though the latter may be moving at high 

speed relative to him. The energy-momentum four-vector 

invariance relation of eq. (6) therefore does not hold in this 

situation. It is only valid when the object of the 

measurement has been accelerated by an applied force in 

the observer’s rest frame, in which case E= γE’.  

One can trace back the limitation in the applicability of 

eq. (6), and also the corresponding energy-momentum 

transformation equations of eqs. (5a-d), to the way they are 

derived in STR [1]. Hamilton’s equation is assumed to be 

valid, which in turn is derived from Newton’s Second Law. 

Accordingly, an applied force at the object’s original 

position causes a change in its energy dE [see eq. (1)]. In 

particular, the speed u in this equation must be computed 

relative to the latter’s rest frame. The situation is 

qualitatively different than for the corresponding 

relativistic space-time transformation, which defines how 

the distance travelled by an object and the corresponding 

elapsed time vary when they are computed relative to two 

different origins in relative motion. In this case the relative 

speed of the two origins is required, independent of how 

the object of the measurement has been accelerated relative 

to a given observer. 

The above discussion emphasizes the need for 

identifying an objective rest system (ORS) for an 

accelerated object in order to compare the measured values 

for its physical properties obtained by different observers 

in relative motion to one another. This concept allows one 

to define a rational set of units for each observer by 

employing the time-dilation formula of eq. (14) and the 

corresponding relations for energy and mass in eqs. 

(8,12-15). Accordingly, the measured values for a given 

property will always be in the same ratio for two different 

observers for any object. The two airplanes in the Triplet 

Paradox have the same units, for example, and thus 

respective onboard observers must always agree perfectly 

on the values of their measurements for a given object. One 

therefore avoids the contradictions inherent in the 

“everything is relative” interpretation of STR whereby two 

observers each conclude that the other’s clocks run slower 

than his own.  
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