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Abstract In this paper the Bayesian structural time series model (BSTS) is used to analyze and predict total confirmed cases 

who infected COVID-19 in the United States from February 28, 2020 through April 6, 2020 using the collect data from 

CDC (Center of Disease Control) in the United States. It includes variables of days, total confirmed cases, confirmed cases 

daily, death cases daily, and fatality rates. The author exploits the flexibility of Local Linear Trend, Seasonality, 

Contemporaneous covariates of dynamic coefficients in the Bayesian structural time series models. In addition, Causal 

Impact function in R programming is applied to analyze the model and read report of model. The results of the model show 

that the total confirmed cases who infected COVID-19 will be still most likely to increase straightly, the total numbers 

infected COVID-19 would be broken through 600,000 in the United States in near future (in the subsequent months). And 

then arrive at the peak around mid-May 2020. The cumulative prediction values are 1e+05 of cumulative trend. Also, the 

model suggests that the probability of variable Recovered cases daily is 0.07.   
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Introduction 

 

At present, COVID-19 is a brutal enemy who has killed 

tens of thousands of people. It posed a serious threat to 

human being. Moreover, people do not have effective ways 

to annihilate it. In the pandemic period, most of countries 

can currently take these actions just using passive protect 

measures like social distance, taking masks, and home 

isolation to reduce the infected risk. Many researchers 

analyzed china’s epidemic period that China banned travel 

to and from Wuhan city for more than 50 days the cases 

who infected COVID-19 have been dropped down [1]. 

Some researcher even urged that the home isolation should 

keep until 2022 [2]. However, all economic activities have 

been shown down now. Thus, people expect that bending 

the curve of which keeps rising confirmed cases infected 

COVID-19 and death cases can come up early. Thus, the 

author tries to apply BSTS model to analysis U.S. 

COVID-19 case data from CDC in the United States by 

using Local linear trend, Seasonality, Contemporaneous 

covariates of dynamic coefficients. On the other hand, the 

author takes techniques such as prior distribution and prior 

elicitation, and posterior inference to give some 

interpretations of the model. The research gains more 

effective results.  

In addition, many institutions and scholars conducted a lot 

research for COVID-19. Some researchers used an 

objective approach to predict the continuation of the 

COVID-19. They produced ten-day ahead point forecasts 

and prediction intervals [3]. Some people used 1334 cases 

from China that were line-list data to receive age-stratified 

estimation. The results displayed that the case fatality ratio 



Analysis of COVID-19 with Time Series Models 

 

J Med Discov│www.e-discoverypublication.com/jmd/ 2 

was likely to be strongly influenced by the availability of 

health-care facilities [4]. Also, some scholars chose 

exponential smoothing family to test forecasting accuracy. 

The family suggested that there were good effects [5]. In 

the initial phase, the author in this paper applied general 

time series forecasting methods followed by his previous 

techniques such as SARIMA model (1,1,2) (Seasonal 

autoregressive integrated moving average) and GARCH 

(generalized autoregressive conditional heteroskedasticity) 

to tested and analyzed the trend and seasonality of COVID 

19 data [6,7]. The results showed good accuracy over a 

couple of forecasting competition. Also, the author tested 

to least absolute shrinkage and selection operator to 

estimate parameters of COVID-19 data by introducing into 

previous his method [8]. And then, used clustering method 

to allow “the eigenvalues of the correlation or covariance 

to test the parameters” [9]. But it was not positive effects.  

On the other hand, some pursued new angle of research on 

COVID-19. For example, German and British scholars’ 

research found that it is probable to have three types of 

viruses: A, B, and C for COVID-19. U.S. cases are likely to 

come from them [10]. But epidemiologists often apply time 

series models such as ARIMA model (Autoregressive 

Integrated Moving Average), spectral analysis and the 

periodogram. For instance, an epidemiologist used the 

Lomb periodogram and the classic periodogram to 

Philadelphia Whooping cough timer series to achieve 

project research goal [11].    

In despite of these research on COVID-19, no institutions 

and scholars use BSTS to analyze and predict COVID-19. 

Therefore, the author would like to test to use BSTS to 

analyze and forecast the total Confirmed cases in the 

United States that collects data from CDC from February 

29, 2020 through April 6, 2020. The author thinks that the 

Causal Impact function in R programming is the feature 

selection in BSTS model that may perform causal inference 

by counterfactual predictions. It has good characteristics 

such as trend, seasonal, regression, holiday. It is one of 

good default model [12]. It is supposed that the time series 

of the treated unit is explained with a set of covariates 

while do not allow themselves to be impacted by the 

intervention. This is currently popular analysis method of 

time series model. Typically, it contains pre-period, 

post-period arguments and / or alpha, etc. for this paper, a 

time series model is automatically built and estimated. The 

argument models provide over the model computations.  

For most models of BSTS we know that “niter” is number 

of Markov Chain Monte Carlo (MCMC) sample to draw. 

The model can generate time series model for short- and 

long-term forecasting [13]. If there is higher number, it is 

more accurate inferences. “standardized. data” allows all 

columns of the data with moments estimated for the 

pre-intervention period prior to fitting the model to be 

standardized. It means that empirical Bayes accessing 

setting the priors so that the results will be linear 

transformations of the data. “priot.level.sd.” denotes in 

terms of data standard deviations that does have the 

Gaussian random walk of the local level. It can choose and 

let dataset with low residual volatility when regressing out 

known predictors such as total confirmed or fatality in this 

data. “nseasons” is period of the seasonal components. In 

general, it contains a seasonal component, set this to entire 

number larger than 1. For example, when there are daily 

observations, e.g. 1 for a day from a component of data, it 

interfaces currently only supports up to one seasonal 

component. In addition, it can let observations specify a 

number of seasonal components. Therefore, BSTS. model 

defaults to 1 that means no used seasonal component. 
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“season. duration” is a kind of duration of each season. For 

example, if adding a day-of-week component to data with 

daily granularity, and offers the arguments 

model.args=list(nseasons=7. Season, duration=1), etc. 

“dynamic. Regression” includes the coefficients of time 

varying regression. It may combine local trend or local 

level that effects one of over specification.    

 

Bayesian structural time series models 

Typically, models of structural time series data are state 

space models. Most of them can be regarded as a set of 

equations. Structural models are much easier to generalize, 

such as covariates and we are not hard to process missing 

values with structural models [14]. For example, the local 

level model is  

𝑌𝑡 = 𝑊𝑡
𝑇𝑢𝑡 + 𝜀𝑡 ,  𝜀𝑡~ 𝑁(0, 𝜎𝜖

2)              (1)  

𝑢𝑡+1 = 𝑇𝑡𝑢𝑡 + 𝑆𝑡𝜔𝑡 ,  𝜔𝑡~ 𝑁(0, 𝜎𝜔
2 )          (2)  

The above equations assume under independent of all other 

unknowns. For 1
st
 equation it is the observation function 

that connects with the observed data 𝑌𝑡  to a latent 

d-dimensional state 𝑢𝑡. Second one is the state function 

that involves in the process of vector 𝑢𝑡 through time. 

Thus, second one called “state” equation sometimes. Also, 

𝑌𝑡  is as to a scalar observation and 𝑊𝑡 is usually 

d-dimension output vector by transition matrix 𝑑 × 𝑑. 𝑆𝑡 

is often a matrix by 𝑑 × 𝑞.  𝜀𝑡 is regarded as a scalar 

observation error that could be noise variance 𝜎𝜖
2  and 

𝜔𝑡 is a q-dimensional system error with a 𝑞 × 𝑞  state 

diffusion matrix  𝜎𝜔
2 . Here, note that 𝑞 ≤ 𝑑 exists.  

Since structural time series model has some advantages of 

flexible and modular and is statistical method for feature 

selection, it is more and more valued by time series 

researchers. For their flexible, it is probably because the 

model includes all ARIMA models (Autoregressive 

Integrated Moving Average). Modular does combine with 

𝑊𝑡 , 𝑇𝑡  and 𝜔𝑡 , etc. from a library of component 

sub-models to capture significant structures in the data.  

Some of component models have been applied to capturing, 

the trend, seasonality, or else. For example,  

(1) Local linear trend. The 1
st
 components model. It is 

a form of the following equations:  

𝑌𝑡 = 𝑢𝑡 + 𝜀𝑡 ， 𝜀𝑡~ 𝑁(0, 𝜎𝜖
2)                  (3)  

𝑢𝑡+1 = 𝑢𝑡 + 𝛽𝑡 + 𝜔𝑡 ， 𝜔𝑡~ 𝑁(0, 𝜎𝜔
2 )           (4)  

𝛽𝑡+1 = 𝛽𝑡 + 𝜑𝑡 ，  𝜑𝑡~ 𝑁(0, , 𝜎𝜑
2)              (5)  

This is a selection of modeling trends that can fit for local 

variation immediately. Especially for short term prediction 

requirement, it seems to appear in the flexible levels, but it 

is not appropriate to long term predictions. Here, 𝑢𝑡 is 

trend, 𝛽𝑡 is the seasonal component. Moreover, the model 

is faster to enters the state space framework [15].  

(2)  Seasonality.  

Like local linear trend, seasonality is also state component 

model. The functions are as follows:   

 𝑌𝑡 = 𝑢𝑡 +𝜃𝑡 + 𝜀𝑡   ,  𝜀𝑡~ 𝑁(0, 𝜎𝜖
2)          (6) 

 𝜃𝑡+1 = − ∑ 𝜃𝑡−𝑠
𝑠−2
𝑠=0 + 𝛾𝜃,𝑡                     (7)  

Here, S expresses the number of seasons and 𝛾𝑡 that 

indicates joint contribution to the observed response 𝑌𝑡. 

Please note that S-2 is most recent seasonal effects. Also, 

there is a scalar for the error term. Moreover, the equation 

is one of state model that does have less than full rank. For 

𝜃𝑡+1 there is the mean that has zero of the total seasonal 

effect with summed over S seasons. For instance, when 

S=3 so that we can capture 3 seasons per time unit, the 

mean of the spring coefficient might be -1× (summer 

+fall+ winter), then, for the seasonal model the transition 

matrix 𝑀𝑡 will be (S-1) × (S-1) matrix with -1’s with the 

top row, which the sub-diagonal and 0’s else. 
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(3) Contemporaneous covariates of dynamic/static 

coefficients  

The latter is to control time series when it gets no treatment. 

It is used to solve accurate counterfactual predictions and 

effects other unobserved causes. In this paper, it is mainly 

used of former, contemporaneous covariates with dynamic 

coefficients. It is a regression component to explain time 

varying ties for example, suppose covariates a=1,2, …, n, 

was imported in the dynamic regression component, then 

we have the following expression:  

𝑍𝑚
𝑀𝜌𝑚 = ∑ 𝑧𝑛,𝑚𝜌𝑚,𝑛

𝑛
𝑛=1                       (8) 

𝜌𝑚,𝑛+1 =  𝜌𝑚,𝑛 + 𝜏𝜌,𝑚,𝑛                      (9)  

Here, the above equation  𝜏𝜌,𝑚,𝑛  belongs to 

𝜏𝜌,𝑚,𝑛~𝑁(0, 𝜎𝜌𝑚
2 )  the coefficient for the m th control 

series and 𝜎𝜌𝑛
 is the standard deviation of its connected 

with random walk. If setting 𝑄𝑚 = 𝑎𝑚,, 𝑃𝑚 = 𝐿𝑚, on the 

other hand, we set the corresponding the transition matrix 

into 𝑉𝑚 = 𝐾𝑛×𝑛 , and 𝐷𝑚 = diag ( 𝜎𝜌𝑚

2 ), then we can 

complete the dynamic regression components.  

(4) Prior distributions and prior elicitation  

Suppose 𝛾 expresses all of model parameters, 𝜑 is a set 

of the full state sequences and 𝜑 = 𝜑1, … , 𝜑𝑛. They are 

allowed to a prior distribution x (𝛾 ) with the model 

parameters and exist in x(𝜑0|𝛾 ) is regarded as the initial 

state values. So, we use MCMC method to gain the sample 

results through p (𝜑, 𝛾| 𝑑 ). If there are a matrix 𝜏 with 

zero of elements and suppose 𝜃𝑡 = 1,  𝜏𝑡  ≠ 0  and 

𝜃𝑡 = 0,   otherwise. Also, if 𝜏𝑛  expresses the nonzero 

scalars for the vector 𝜏 . If sequences q= 𝑞1, 𝑞2, … ,

𝑞𝑛.  Suppose  ∑  is −1
𝑞 the rows. The columns are be 

nonzero entries for q. Then, we can use the spike and slab 

in the following function: 

p (q, 𝜏,  
1

𝜎𝜖
2) = p (q) p( 𝜎𝜖

2|𝑞)  p( 𝜏𝑚|𝑞  , 𝜎𝜖
2 ) [16]       

(10)  

 

In addition, we can also write a formula for slab of the 

prior if using Gamma distribution:  

 𝜏𝑞|𝜎𝜖
2~𝑁 (𝑏𝑞,𝜎𝜖

2(∑ )−1
𝑞

−1
)    [16]            (11)    

(5) Posterior inference  

For the full likelihood function, if the law of total 

probability is p (A)= ∑ 𝑃(𝑛 𝐴|𝐵𝑛)𝑃(𝐵𝑛 ), then we have the 

function:  

 p (𝛿, 𝜏, ∑ 𝜋𝑞 ) = 𝑝( 𝛿, |𝜏, ∑ 𝜋𝑞, ) 𝑝(𝜏|𝜋) 𝑝(∑ |𝜏𝑞 ) 𝑝 (𝜋 )   

                                          (12)  

Here, 𝛿 expresses the set of values to multiple time series 

that is components of time series with trend, seasonality 

and others). Also, ∑ 𝑖𝑠𝑞  a correlated error. It is involved in 

a normal prior to have the observations standardize, and 

then generate a posterior distribution. Thus, we could use 

MCMC to compute the posterior probability distribution 

[16]             

(6) Forecasting  

Since the forecasts are associated with the mode with the 

posterior predictive distribution, Bayesian analysis and 

forecasts have a formula that is like posterior inference. If 

we define 𝛿 as the set of values, then we can get the 

formula of posterior predictive distribution is as follows:  

p (𝛿 | 𝜔)  = ∫ 𝑝 ( 𝛿|𝛽)𝑝(𝛽 |𝜔) 𝑑𝛽.  [16]       (13) 

 

Results  

 

The data of this paper is used from CDC (Center of 

Disease Control) in the United States. The author collects 

variables is that (1) The days are time that gets to start to 

report the first death case, from February 29, 2020 through 

April 6, 2020. (2) Total Confirmed cases. This is counting 

same as the days by which patients have been tested the 

positive Corona virus Nucleic Acid testing no matter 
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whether or not they have symptoms with cough, fever, and 

other upper respiratory tract infection. (3) Recovered cases 

daily who have been treated or in hospital or out 

outpatients, or self-heal without any treatment. (4) Death 

cases who were computed without vital signs. (5) Fatality 

rate. It is the numbers that computed by the 

formula=100 % (Death cases daily/ Confirmed cases daily). 

To find the relationship with the confirmed case daily and 

death case daily in the United States, the author made plot 

of time series for the both. The results showed that there is 

significant linear regression between the both. Please see 

the following figure 1.  

 

Figure 1. The plot of time series with conformed cases daily and 

death cases daily.  

 

For predict struct, plots are three panels: The 1
st
 one shows 

that the data and a counterfactual prediction for the 

post-treatment period. The 2
nd

 one displays the difference 

between observed data and counterfactual prediction trends, 

which is the pointwise case effect via the model 

estimations. The last one is plus of the pointwise 

contributions by the 2
nd

 panel that generates a plot of the 

cumulative effect of the intervention. They are based 

mainly on the assumption that most of covariates impacted 

by the intervention. Also, the model is assumed by which 

the relationship between covariates and treated time series 

as established while the pre-period, remains stable to the 

post-period.  

 

Figure 2. The prediction plot for original data, pointwise, and 

cumulative.  

 

In the Figure 2 the model contains that the relationship 

between Confirmed cases daily in the and Deaths cases 

daily in the United States from February 29, 2020 

throughout April 6, 2020. Clearly, it shows that the cases of 

confirmed data will be dropped as the end of April 2020, 

and then slightly rebounded in mid-May 2020 but 

decreased after that. The numbers of cases daily is 

fluctuated around 10,000 cases. 

Causal Impact function is one of feature selections in 

BSTS model that may perform causal inference by 

counterfactual predictions. It is supposed that the time 

series of the treated unit is explained with a set of 

covariates while do not allow themselves to be impacted by 

the intervention. It is currently popular analysis method of 

time series model. Typically, it contains pre-period, 

post-period, mode.arg and/ or alpha, etc. for this paper, a 
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time series model is automatically built and estimated. The 

argument mode. arguments provide over the model.  

In Table 1 R output suggests that the predictive values are 

the range of (73594, 439814) for total confirmed cases that 

infected COVID-19 virus in the United States. For 

cumulative prediction the value is ± 1e+05 of cumulative 

trend.  

 

Table 1. The R outputs of posterior inference using causal impact 

function  

 

> summary (impact, "report") 

Analysis report {Causal Impact} 

During the post-intervention period, the response variable 

had an average value of approx. 6.48K. In the absence of 

an intervention, we would have expected an average 

response of 7.21K. The 95% interval of this counterfactual 

prediction is [4.88K, 9.62K]. Subtracting this prediction 

from the observed response yields an estimate of the causal 

effect the intervention had on the response variable. This 

effect is -0.73K with a 95% interval of [-3.14K, 1.60K]. 

For a discussion of the significance of this effect, see below. 

Summing up the individual data points during the 

post-intervention period (which can only sometimes be 

meaningfully interpreted), the response variable had an 

overall value of 395.26K. Had the intervention not taken 

place, we would have expected a sum of 439.81K. The 

95% interval of this prediction is [297.83K, 587.09K].  

The above results are given in terms of absolute numbers. 

In relative terms, the response variable showed a decrease 

of -10%. The 95% interval of this percentage is [-44%, 

+22%]. 

This means that, although it may look as though the 

intervention has exerted a negative effect on the response 

variable when considering the intervention period as a 

whole, this effect is not statistically significant, and so 

cannot be meaningfully interpreted. The apparent effect 

could be the result of random fluctuations that are 

unrelated to the intervention. This is often the case when 

the intervention period is very long and includes much of 

the time when the effect has already worn off. It can also 

be the case when the intervention period is too short to 

distinguish the signal from the noise. Finally, failing to find 

a significant effect can happen when there are not enough 

control variables or when these variables do not correlate 

well with the response variable during the learning period. 

The probability of obtaining this effect by chance is p = 

0.274. This means the effect may be spurious. 

> impact$summary 

 

Posterior Inference (Causal Impact)                                                    

 Average Cumulative 

Actual 6480 395258 

Prediction(s.d.) 7210 (1206) 439814 (73594) 

95% CI [4883, 9624] [297834, 587088] 

Absolute effect (s.d.) -730 (1206) -44556 (73594) 

95% CI [-3145, 1597] [-191830, 97424] 

Relative effect (s.d.) -10% (17%) -10% (17%) 

95% CI [-44%, 22%] [-44%, 22%] 

Posterior tail-area probability p:   0.25301 

Posterior prob. of a causal effect:  75% 
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Table 2. The summary on predictive average values and the ranges. 

 Actual Pred Pred.lower Pred. upper 

Average 6479.639 7210.071 4808.34 9627.339 

Cumulative 395258.000 439814.318 293308.71 587267.675 

 Pred.sd AbsEffect AbsEffect.lower  

Average 1216.347 -730.4314 -3144.747  

Cumulative 74197.197 -44556.3184 -191829.583  

 AbsEffect.upper AbsEffect.sd RelEffect  

Average 1671.3 1216.347 -0.1013071  

Cumulative 101949.3 74197.197 -0.1013071  

 RelEffect.lower RelEffect.upper RelEffect.sd  

Average -0.4365699 0.2318008 0.1673295  

Cumulative -0.4365699 0.2318008 0.1673295  

 Alpha P   

Average 0.05 0.2740964   

Cumulative 0.05 0.2740964   

 

In Table 2 we can see that pre.lower and Pred. upper are 

293308.71 and 587267.67. For time series data of response 

variables and other covariates, data is often given a zoo 

object, a vector, a matrix or others. The response variable 

could be the 1
st
 column and other covariates distributes to 

other columns; a zoo object will be regarded as its time that 

indicates the x-airs in plot technique. Option “response” is 

used to describe the observed response as supplied to 

Causal Impact function. Option “cum.reponse” provides 

cumulative response with the modeling time. Option 

“point.pred” is posterior mean of counterfactual predictions. 

“Point.pred.lower” and “point.pred.upper” are a set of  

lower limit or upper limit (1-alpha) posterior intervals. 

“Pomt.effect” is point-wise posterior causal effect. It may 

include lower and upper of the poster intervals 

“Cum.effect.lower” or “Cum.effect.Upper” are similar as 

the above. The results show that the range of total 

cumulative confirmed cases infected COVID-19 virus in 

the United States should be around 4808 to 9627 daily and 

most likely to be (293309, 587268). That is, total numbers 

infected COVID-19 virus would be nearly 600,000 in the 

United States in subsequent months. 
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Figure 3 shows the data and estimated smoothed values. the actual data are shown as solid lines, the points denote smoothed values with ±2 

standard error bounds are shown as a blue color; tick marks indicate days of observation. 

 

Figure 3 shows the data and estimated smoothed values. 

the actual data are shown as solid lines, the points denote 

smoothed values with ±2 standard error bounds are shown 

as a blue color; tick marks indicate days of observation.  

  

 

Figure 4.   Structural models: the trend and seasonal parameters of the total confirmed variable. 

 

Figure 4 shows that estimated trend component and 

seasonal component of the total confirmed variable with 

the variable days. Gray areas represent some root MSE 

bounds.   

 

Figure 5. Visualization of BSTS predicting original series.  

 

The Figure 5 is a visualization of predictive values for 

original series. It suggests that, after 38
th
 day, which the 

last day collect dataset, the total confirmed cases infected 

COVID-19 would be fluctuated with the range of ± 

1e+05. That is, it conforms that total confirmed cases could 

be increased in subsequent months. Therefore, it meets 

with the forecast of Figure 2 (The prediction plot for 

original data, pointwise, and cumulative), which is ± 

1e+05 of cumulative trend.  
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Figure 6. Plots for scale value and cumulative absolute errors of 

level, trend and season with days that started in February 29.  

 

In Figure 6, we can see clearly that, using 

“AddlocalLinearTrend “and seasonal functions could allow 

us analyze level, trend and season change with variable 

“days” after making logarithm of data. The results show 

that predictive values regressed with original data. It 

explains enough that the advantages of flexibility of local 

linear trend, level and season of BSTS state component 

models for the short-term predictions.   

Figure 7. The plot of average coefficients from six parameters. 

 

Figure 7 generates a histogram that displays average 

coefficients from Fatality, Day, Deaths, Recovered, and 

Confirmed daily. It shows that average coefficient of 

Fatality seems to be more significant than other variables 

in the model. Hence, the average coefficient of Fatality rate 

should be worthy in our analysis on these parameters. The 

author would like to point that average coefficient from 

Conformed Daily looks like to not have any status in the 

model.  

 

Figure 8. Histogram of probabilities for data variables    

 

Figure 8 provides us inclusion probabilies comparing each 

variable in the analysis system. The results shows that the 

probability from variable Recovered is nearly 0.07. It looks 

like to play more important role than other variables in the 

data. Second one is more than 0.04 of  variable Death; 

around 0.038 of Confirmed Daily, lastly, other two 

variables, Fatality and Day, are equal to or lower than 0.02. 

Thus, it suggests that in the empirical estimation and 

analysis on the model we should eye on them. 

 

Discussion  

 

For most models of BSTS we know that “niter” is number 

of MCMC sample to draw. If there is higher number, it is 

more accurate inferences. “standardized data” allows all 
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columns of the data with moments estimated for the 

pre-intervention period prior to fitting the model to be 

standardized. It means that empirical Bayes accessing 

setting the priors so that the results will be linear 

transformations of the data. “priot.level.sd.” denotes in 

terms of data standard deviations that does have the 

Gaussian random walk of the local level. It can choose and 

let dataset with low residual volatility when regressing out 

known predictors such as total confirmed or fatality in this 

data. “nseasons” is period of the seasonal components. In 

general, it contains a seasonal component, set this to entire 

number larger than 1. Thus, BSTS model defaults to 1 that 

means no used seasonal component. “season. duration” is a 

kind of duration of each season. “dynamic. Regression” 

includes the coefficients of time varying regression. It may 

combine local trend or local level that effects one of 

overspecification. Also, for posterior distribution, it can 

summarize the proportion if observing the data [17].    

In this paper Causal Impact function of BSTS model is 

applied to analyze and forecast the model of  the total 

confirmed cases in the United States from February29 to 

April 6.The author thinks that the total conformed cases 

that infected COVID-19 virus in the United States will be 

most likely to increase straightly, total numbers infected 

COVID-19 virus would be nearly 600,000 in the United 

States in near future (in the subsequent months). And then 

will appear in the peak around the md-May 2020. The 

empirical results suggest that the flexibilities of local linear 

trend, seasonality, and contemporaneous covariates of 

dynamic/static coefficients have good effects on short term 

predictions.  
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